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1 Introduction

The objective of the RAMP project is to accel-
erate multiprocessor systems research through the
emulation of usable parallel processor prototypes.
Criteria such as low cost, flexibility, observability,
credible and repeatable results, and reasonable per-
formance led to the choice of the FPGA platform,
BEE2 (Berkeley Emulation Engine) as the primary
host environment.

A key goal of RAMP is the extraction of credible
performance results, even from tests which are not
run in real time. The need for a timing model was
the original reason for RDL [12].

Credible results, however, also require the use of
known tests, or applications, many of which are tied
to existing instruction set architectures (ISAs). To
run such tests, and finish the infrastructure phases
of RAMP quickly, it is highly desireable to be able
to run pre-compiled code for existing architectures.
This has led to a major push among the RAMP
participants to find, adapt or develop HDL descrip-
tions of existing ISAs and, with the addition of RDL
wrappers, turn them into RAMP-compatible pro-
cessors. While this approach will lend signficant
credibility to any results, it presents critical chal-
lenges, and will delay the project from the longer-
term goal of parallel system research. In this paper
we outline our proposal to drastically reduce the
one-time work required to achieve ISA level com-
patiblility for a variety of architectures, while ad-
dressing essential research and efficiency goals.

Rather than trying to acquire and adapt for
FPGAs, HDL code for each processor family and
model, we propose to build a single unified proces-
sor, along with tools to customize and program it.
When compatibility is required, exiting code can
be made to run on this processor by using binary
translation. Because we would no longer attempt to
synthesize gateware from an existing processor sim-
ulation model, e.g.from OpenSPARC, our unified
processor can be dramatically more area-efficient,
as it can have an ISA and micro-architecture tai-
lored to FPGAs. Furthermore, by generating (pos-

sibly widely varied) processors in a uniform way, we
can significantly simplify research into architectural
features.

The next few sections cover the problems, goals
and research questions this project will address. As
this is a preliminary whitepaper, we do not offer
complete solutions but we do attempt to suggest
them for most of the open research questions. We
are also openly soliciting related ideas as well as
informed suggestions and commentary.

2 The Current Approach

The current RAMP approach is typified by the
RAMP Blue project, where multiple instances of
an FPGA implementation of a commercial proces-
sor core, the Microblaze from Xilinx in this case,
are combined to form a simple multi-core design.
The MicroBlaze was chosen as the first RAMP soft
processor, as it had an existing efficient mapping to
FPGAs. From its conception, the MicroBlaze ISA
and microarchitecture were optimized for FPGA
implementation, and its low-level mapping to FP-
GAs was hand-optmized.

By providing a quick path to a compact multi-
core system, The MicroBlaze nicely served the short
term needs of RAMP. However, in the long-run,
RAMP will need to support several more commer-
cially relavent ISAs, such as PowerPC, SPARC,
ARM, X86, and MIPS. Unfortunately, these ISAs
have not been optimized for FPGA implementa-
tions, nor have their currently available microar-
chitectures.

Furthermore, none of these cores have optimized
low-level FPGA implementations. While in some
cases, we can expect to rely on processor vendors to
do the work necessary to create efficient FPGA ver-
sions of their processor cores, adapting these cores
for RAMP would require significant investment by
the RAMP team to get these cores to a point where
they are practical for RAMP. Evidence of this is vis-
ible in a simple comparison of LUT counts: a full,
unoptimized OpenSPARC core would take 130,000
LUTs on a Xilinx Virtex4, whereas a Xilinx Mi-
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croBlaze can take less than 2000. With the current
generation of boards, the BEE2, this is the differ-
ence between having 2 and 40 processors per board.

In the next section, we present our solution to
these problems.

3 Vision and Proposal

We propose to create a set of tools and languages to
allow a researcher to specify, build, compile for, de-
bug, and run existing code on new and possibly spe-
cialized processor architectures. Setting aside the
challenges in the creation of such a toolset, which
we will discuss in 4, we believe this presents a clean
solution to the problems outlined in 2

The vision for RAMP centers around the idea
that it could become the shared platform for mul-
tiprocessor architecture and systems research, in
such a way as to supplant all others. Ideally, this
would include a simple set of tools, perhaps with a
GUI, to create a usable computer system, includ-
ing processors, memory, network, storage and I/O,
which has been tuned for efficient implementation
and can run existing applications.

Such a system could include the flexibility needed
to make architectural changes, e.g.ATLAS [20]
transactional memory support. It could also in-
clude flexibility in the network design, allowing a
researcher to experiement with the performance of
various topologies. Because such a system would
naturally require specification at a very high level,
efficient implementations could be generated, in-
creasing the number of procecssors, while decreas-
ing the slowdown relative to a full custom ASIC de-
sign. Furthermore, with the ability to run precom-
piled binaries, modifications could be made inde-
pendant of operating system and application com-
pilation, drasticly reducing the time to do detailed
performance studies.

We believe that even the processor architecture
subset of such a toolkit would meet most of the
infrastructure goals of the RAMP project, leav-
ing participants free to pursue new research rather
than recoding old ISAs for FPGA implementation.
The efficiency gains from such a universal proces-
sor compiler targetted to an FPGA would provide
the cost reduction needed to run high performance
processors. The flexibility and code compatibility
would allow the use of existing code, even to the
point of running closed source operating systems
such as Microsoft Windows. We should also men-
tion that there are existing projects are already
looking at the network generator portion of the
overall system toolkit.

The primary features of our proposed toolkit are

the architecture compiler, and binary translation
framework. By synthesizing processor cores from
high level descriptions, including both the ISA,
and overall architecture (number of pipeline stages,
cache size, etc), we can more easily and efficiently
target FPGAs. Tricks like multiplexor implemen-
tation through registers, the use of double clocked
Xilinx Block RAM for dual port register files, and
so forth can be relatively painlessly added to such
a generator, especially as part of the larger RDLC3
and RCF (RAMP Compiler Framework) implemen-
tations. Furthermore, given a semantically rich
description of an ISA, including ISA, consistency
model, virtual memory and exceptions, we should
be able to automatically generate binary transla-
tors, allowing easy customization of the underlying
processor with the need to even re-compile applica-
tions.

In this section we have outlined our ideal full
computer system generator tools, and describe the
subset, a universal processor compiler and binary
translator generator, which will accomplish most of
our goals. We have briefly mentioned their integra-
tion with the next generation of RDLC and RAMP
compiler tools through the generalized RCF. How-
ever, we have not addressed the myriad of chal-
lenges to the creation of these tools, nor provided
any substantial justification for our belief that their
creation is possible; we will do that in the following
section 4.

4 Challenges

In the previous section we outlined high level goals
and long term vision, without regard to the chal-
lenges inherent in our proposal, in this section we
outline and begin to address these issues. First
of all, the universal processor generater will entail
a complete micro-processor synthesis tool, which
should include not only specialized instruction syn-
thesis, but generators for various microarchitec-
tures, from single cycle to out of order. Further-
more, efficiency issues of FPGA implementations
remains a daunting task in the face of this kind
of generator framework. Second, binary transla-
tion has been an active area of research for some
20 years, spanning many universities and compa-
nies, but there have been relatively few large scale
successes.

4.1 Universal Processor

While there have been a number of projects, and
even a commercial product from Tensilica, which
generate application specific processors, what we
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are proposing is an order of magnitude more ambi-
tious. Clearly the creation of a functional datapath
from an NJMC [24, 25], SSL [5] or application level
description [19, 14, 28] is a relatively simple prob-
lem, as commercial synthesis tools general can cre-
ate reasonable datapaths. However, the creation of
efficient processor execution stages adds the com-
plication of control organization, which in the case
of a microarchitecturally parameterized generator,
such as the one we propose, will require new re-
search. Furthermore, most of the existing projects
deal in fixed memory consistency, virtual memory
and exception models, all of which we would like to
parameterize or describe in an application specific
language.

The primary isssues facing the universal proces-
sor generator work are:

1. Memory coherence and consistency models for
cross processor compatibility.

2. Highly compact ISA synthesis in FPGAs.

3. Abstract virtual memory models for compati-
bility.

4. Full instruction set virtualization.

5. Support for binary translation, both as a tar-
get and host.

Our justification for building a generator rather
than a single processor implementation stems from
the similarity of processors, the need to trade area
for speed in research experiments, and the tantaliz-
ing opportunity to build integrated tools using the
core RDLC3 and RCF code to tie together comilers,
languages and debugging tools.

The primary importance of the area-speed trade-
off arises from the desire to build 1000 processor
machines and still perform credible timing simula-
tions. These two goals will often be in conflict, and
a processor generator will allow researchers to trade
the two, perhaps using coarser, faster simulations
early in a project to guide further work, a lofty goal
which is painfully lacking in our own current work.

The desire to build integrated tools for such a
processor environment is less clear, but stems from
our interest in building drastically different ASIPs.
We envision being able to accomodate everything
from a full out of order processor, to a 20 LUT bit
serial proccessor such as might be useful for system
initialization tasks. Having a common set of tools
for this wide range of implementations will allow
us to save significant work, especially in the com-
plex FPGA specific optimization areas, and com-
piler building, which RCF is specifically designed
to simplify.

We believe that a universal processor generator
is both possible, given the state of research and our
FPGA targets, and useful given the time it would
take to mindlessly implement a range of existing
ISAs. Our hope is that this will both reduce the
time to build a complete RAMP infrastructure, and
provide ways of doing new research.

We would like to point out that over the past
two months there have two projects involving
one of the authors building specialized processors.
The FLEET builder project comprises a series of
RDLC2 plugins to build a customized processor
(based on a special architecture [26]) and the appro-
priate assembler from a very simple listing of func-
tional units. Similarly, there was a course project
[13] to build an implementation of the P2 [21] sys-
tem on top of RDL, which included a special pur-
pose database tuple processor builder, along with a
customized assembler and compiler for this proces-
sor. While these projects are far simpler than the
universal processor generator, they provided confi-
dence that we can build such a tool on the RDLC3
and RCF framework.

4.2 Binary Translation

The use of binary translation to run precompiled
code, is the linchpin of our argument for using the
Universal Processor as the core of RAMP work.
There are several arguments against binary trans-
lation, starting with correctness and performance.

Most past projects, UQBT [2, 3, 7, 4, 5, 6] ex-
cepted, have focused solely on translation from
fixed ISAs, most of which have closely matched the
host and target architectures. Of course our pro-
posal includes translation between vastly different
architectures, incurring both performance problems
for emulation of mismatched instructions and cor-
rectness issues especially in virtual memory, consis-
tency and exceptions. This again is a key motiva-
tion for the creation of a universal processor gener-
ator: projects like Embra [29] and BOA [1, 11, 15]
suggest that even relatively minor changes to the
host ISA can have significant positive impact on
the speed of translated binaries. Because we are
primarily interested in FPGA implementations (we
are not currently investigating ASICs, but we are
not ruling them out) our host processors can be
flexible enough, that should an experiment require
better performance a researcher can simply tweak
the host ISA.

The fact is that there have been a wide range
of binary translation projects spanning over two
decades of research, including UQBT (which be-
came Sun Walkabout [8]), Embra, BOA, DAISY
[16], FX!32 [10], the Transmeta Crusoe [9] and the
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Intel Pentium4 [18]. Because there exists a large,
but somtimes incomplete, body of knowledge, we
believe there is a firm basis for our work. UQBT
in conjunction with NJMC suggest ways of describ-
ing, if not specifying processors such that transla-
tion tools can be automatically generated. BOA
and Crusoe both provide results which can guide
our choice of translation time (static, dynamic or
instruction level). The FX!32 and Pentium 4 both
provide successful examples of such software and
hardware under deployment conditions. And pa-
pers like [16] provide extensive arguments for the
use of the techniques proposed in this whitepaper.

The most compelling argument against binary
translation is the overhead introduced into running
even the simplest of applications. Systems like Em-
bra, however, brought this down to a 4x slowdown
for the fastest case, from a more common 20x-100x
in previous systems. We believe that between the
clever techniques used by such systems, and the
possible customization of the host processor in ex-
treme cases, the performance of our translations
will be acceptable. In addition, we intend to stress
the use of run-time optimizations, which in some
cases have caused binary translation to accelerate
unprofiled applications. In light of the customiz-
ability of the host processor, poor performance is
more likely to be a result of a ISA gap between
the host and targets, which can be reduced by cus-
tomization.

However, the real key performance observation
is that raw speed has NEVER been a goal of the
RAMP project. By trading some performance for
observability, reproducability and flexbility we can
build a much better research platform. In the end,
it is researcher time, the late hours put in by gradu-
ate students, professors and even undergrads, which
is the most costly. We believe that our universal
processor and binary translation tools with success-
fully trade modest amounts of run time for enor-
mous amounts of mindless researcher work time, a
very beneficial trade indeed, and the basis of all
computing.

4.3 Compatibility and SMC

Some of the biggest challenges in binary transla-
tion arise from the uncommon cases: exceptions
and self-modifying code are the two biggest chal-
lenges in most of the binary translation research. In
general they are handled the same way: by invoca-
tion of dynamic translations or emulation, trading
speed for power and flexibility in the uncommon
case.

Combinations of the work on Embra and the Cru-
soe also suggest interesting possbilities for debug

and test instrumentation, and optimization. First
off, both Embra and UQDBT [27] (the dynamic
variant of UQBT) allow the instrumentation of the
translation results to provide performance counters
accurate to the target architecture. Similar tech-
niques could be used to allow e.g.IA-32 (x86) cache
studies even under a universal processor and binary
translation scheme.

Second, the Crusoe work makes a critical distinc-
tion between truly self-modifying code, the hardest
case for translators, and seemingly self-modifying
code, wherein data and code are on the same VM
page. Some of the techniques in [9] suggest effi-
cient ways to differentiate and handle these cases,
thereby avoiding some of the most common draw-
backs to binary translation.

4.4 Multiprocessor Systems

To this point we have repeatedly mentioned the
need for small and efficient generated processor in
order to build large multiprocessors, but we have
not addressed e.g.the challenges of binary transla-
tion on these systems. Clearly the univeral proces-
sor generator must handle multiprocessor synchro-
nization in a predictable manner. It will need to
include support for everything from networked or
shared nothing, to cache coherent systems. Work
on such project as the CRF [30, 22] memory model,
perhaps with added support for transactions such
as those under investigation [17, 20, 23] or those
used by the Crusoe, should provide a basis for these
various synchronization systems and translation be-
tween them.

Because even RAMP Blue exhibits under utiliza-
tion of some system level resources, in this case
memory bandwidth, we see opportunities for shar-
ing, especially among processors on one FPGA. For
example, with a translation cache, translation of
code is a relatively infrequent operation, meaning
that many processors might share a single hardware
translator, or processor dedicated to translation.
Furthermore, as most software scenarios for RAMP
machines call for all processors to run a single OS,
most translations could be shared by multiple cores,
thereby reducing the high memory requirements as
reported by Embra.

5 Conclusion

There exists a large body of research in binary
translation, and yet opportunities like an FPGA
implementation, and challenges like a large multi-
core system present opportunities for new research.
There have also been many projects aimed to cre-
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ate application specific, or parameterized proces-
sors and descriptions and yet the relatively per-
formance insensitive application of RAMP, coupled
with it’s research nature offers a new opportunity
to use these tools.

In conjunction we believe that a universal pro-
cessor generator and binary translator toolset will
provide an acceptably high performance, platform
for the research goals of the RAMP project. Fur-
thermore, the creation of these tools, followed by
their use will replace the time consuming, mindless
implementation of existing ISAs with important re-
search into new processor design and specification
techniques. This project represents not only an op-
portunity to further RAMP, but an interesting ap-
plication of the RAMP project to previous research
on ISA design and binary translation.

As a final note, while we have dedicated sign-
ficant research to the opinions in this paper, they
remain opinions. The fact is that there will be little
proof either for or, and we stress this point, against
the ideas presented here without significantly more
research, and we are currently open to both ideas
and opinions, even as we are commited to mov-
ing forward. We would also like to note that this
research does not preclude the usefulness of imple-
menting some ISAs directly, for validation or com-
parison, if not for the clearly higher efficiency.

We would like to thank Alex Krasnov and Adam
Megacz for their help shaping the ideas presented
in this paper, and their ability to point out our
obvious mistakes.
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